How much do we learn? : measuring symmetric and asymmetric deviations from Bayesian updating through choices
Year of publication: |
2025
|
---|---|
Authors: | Aydogan, Ilke ; Baillon, Aurélien ; Kemel, Emmanuel ; Li, Chen |
Published in: |
Quantitative economics : QE ; journal of the Econometric Society. - Oxford [u.a.] : Wiley, ISSN 1759-7331, ZDB-ID 2569569-1. - Vol. 16.2025, 1, p. 329-365
|
Subject: | Non-Bayesian updating | conservatism | confirmatory bias | perceivedsignals | belief elicitation | Bayes-Statistik | Bayesian inference | Lernprozess | Learning process | Theorie | Theory | Experiment | Systematischer Fehler | Bias |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3982/QE2094 [DOI] |
Classification: | C91 - Laboratory, Individual Behavior ; D83 - Search, Learning, Information and Knowledge |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Learning About Unstable, Publicly Unobservable Payoffs
Payzan Le Nestour, Elise, (2014)
-
March, Christoph, (2016)
-
Can People Learn About ‘Black Swans’? Experimental Evidence
Payzan Le Nestour, Elise, (2018)
- More ...
-
Learning under ambiguity: An experiment using initial public offerings on a stock market
Baillon, Aurélien, (2013)
-
Experimental elicitation of ambiguity attitude using the random incentive system
Baillon, Aurélien, (2022)
-
The effect of learning on ambiguity attitudes
Baillon, Aurélien, (2018)
- More ...