How to Predict in An Unpredictable World? Forecasting Automobile Consumer Demand during and after a Pandemic
Year of publication: |
[2021]
|
---|---|
Authors: | Mao, Zhaofang ; Huang, Dian ; Fang, Kan ; Kumar, Subodha ; Zhang, Meishan |
Publisher: |
[S.l.] : SSRN |
Subject: | Prognoseverfahren | Forecasting model | Coronavirus | Welt | World | Konsumentenverhalten | Consumer behaviour | Epidemie | Epidemic | Prognose | Forecast |
Description of contents: | Abstract [papers.ssrn.com] |
Extent: | 1 Online-Ressource |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments April 18, 2021 erstellt Volltext nicht verfügbar |
Source: | ECONIS - Online Catalogue of the ZBW |
-
The benefit of the Covid-19 pandemic on global temperature projections
Rostan, Pierre, (2023)
-
Business Reopening Decisions and Demand Forecasts During the COVID-19 Pandemic
Balla-Elliott, Dylan, (2020)
-
Predicting crude oil prices during a pandemic : a comparison of Arima and Garch models
Haque, Mohammad Imdadul, (2021)
- More ...
-
Mao, Zhaofang, (2025)
-
Balancing U-type assembly lines with human-robot collaboration
Mao, Zhaofang, (2023)
-
Combinatorial Benders decomposition for mixed-model two-sided assembly line balancing problem
Huang, Dian, (2022)
- More ...