How Well Do Automated Linking Methods Perform? Lessons from U.S. Historical Data
Year of publication: |
2017
|
---|---|
Authors: | Bailey, Martha J. |
Other Persons: | Cole, Connor (contributor) ; Henderson, Morgan (contributor) ; Massey, Catherine (contributor) |
Publisher: |
[2017]: [S.l.] : SSRN |
Subject: | USA | United States | Geschichte | History | Datenqualität | Data quality | Forschungsdaten | Research data | Algorithmus | Algorithm | Semantisches Web | Semantic web |
Extent: | 1 Online-Ressource (67 p) |
---|---|
Series: | NBER Working Paper ; No. w24019 |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments November 2017 erstellt |
Source: | ECONIS - Online Catalogue of the ZBW |
-
How well do automated linking methods perform? : lessons from US historical data
Bailey, Martha J., (2020)
-
Using RDF to Describe and Link Social Science Data to Related Resources on the Web
Kramer, Stefan, (2013)
-
Using RDF to describe and link social science data to related resources on the web
Kramer, Stefan, (2012)
- More ...
-
How well do automated methods perform in historical samples? : evidence from new ground truth
Bailey, Martha J., (2017)
-
How well do automated linking methods perform? : lessons from US historical data
Bailey, Martha J., (2020)
-
How Well Do Automated Methods Perform in Historical Samples? Evidence from New Ground Truth
Bailey, Martha, (2017)
- More ...