How well do experience curves predict technological progress? : a method for making distributional forecasts
Year of publication: |
March 2018
|
---|---|
Authors: | Lafond, François ; Bailey, Aimee Gotway ; Bakker, Jan David ; Rebois, Dylan ; Zadourian, Rubina ; McSharry, Patrick E. ; Farmer, J. Doyne |
Published in: |
Technological forecasting & social change : an international journal. - Amsterdam : Elsevier, ISSN 0040-1625, ZDB-ID 280700-2. - Vol. 128.2018, p. 104-117
|
Subject: | Forecasting | Technological progress | Experience curves | Prognoseverfahren | Forecasting model | Technischer Fortschritt | Technological change | Theorie | Theory | Lernprozess | Learning process | Prognose | Forecast |
-
What machine learning can learn from foresight : a human-centered approach
Crews, Christian, (2019)
-
How predictable is technological progress?
Farmer, J. Doyne, (2016)
-
The dynamics of incremental costs of efficient television display technologies
Desroches, Louis-Benoit, (2015)
- More ...
-
Measuring productivity dispersion: a parametric approach using the Lévy alpha-stable distribution
Yang, Jangho, (2019)
-
Measuring productivity dispersion: a parametric approach using the Lévy alpha-stable distribution
Yang, Jangho, (2022)
-
Reconstructing production networks using machine learning
Mungo, Luca, (2023)
- More ...