Hybrid Data Decomposition-Based Deep Learning for Bitcoin Prediction and Algorithm Trading
Year of publication: |
[2020]
|
---|---|
Authors: | Li, Yuze ; Jiang, Shangrong |
Publisher: |
[S.l.] : SSRN |
Subject: | Algorithmus | Algorithm | Virtuelle Währung | Virtual currency | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model |
Extent: | 1 Online-Ressource (33 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments January 22, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3614428 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Forecasting returns volatility of cryptocurrency by applying various deep learning algorithms
Khan, Farman Ullah, (2023)
-
Hybrid data decomposition-based deep learning for Bitcoin prediction and algorithm trading
Li, Yuze, (2022)
-
Forecasting Bitcoin returns using machine learning algorithms : impact of investor sentiment
Ben Hamadou, Fatma, (2025)
- More ...
-
Pricing strategies for blockchain payment service under customer heterogeneity
Li, Yuze, (2021)
-
Li, Yuze, (2021)
-
Li, Yuze, (2021)
- More ...