Identification and auto-debiased machine learning for outcome-conditioned average structural derivatives
| Year of publication: |
2024
|
|---|---|
| Authors: | Jin, Zequn ; Lin, Lihua ; Zhang, Zhengyu |
| Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Abingdon : Taylor & Francis, ISSN 1537-2707, ZDB-ID 2043744-4. - Vol. 42.2024, 4, p. 1318-1330
|
| Subject: | Heterogeneity | Debiased machine learning | Doubly/locally robust score | Local average structural derivative | Semiparametric efficiency bound | Unconditional quantile partial effect | Künstliche Intelligenz | Artificial intelligence | Derivat | Derivative | Schätztheorie | Estimation theory | Nichtparametrisches Verfahren | Nonparametric statistics | Robustes Verfahren | Robust statistics |
-
Unconditional quantile regression with high‐dimensional data
Sasaki, Yuya, (2022)
-
Robust data-driven inference for density-weighted average derivatives
Cattaneo, Matias D., (2010)
-
Robust Data-Driven Inference for Density-Weighted Average Derivatives
Cattaneo, Matias D., (2009)
- More ...
-
Jin, Zequn, (2025)
-
Identification and estimation in a correlated random coefficients transformation model
Zhang, ZhengYu, (2022)
-
Identification and estimation in a linear correlated random coefficients model with censoring
Zhang, Zhengyu, (2020)
- More ...