Improved ridge estimators in a linear regression model
In this paper, the notion of the improved ridge estimator (IRE) is put forward in the linear regression model <bold>y</bold>=<bold>X</bold> <bold>β</bold>+<bold>e</bold>. The problem arises if augmenting the equation <bold>0</bold>=<bold>c</bold>′<bold>α</bold>+<bold>ε</b old> instead of <bold>0</bold>=<bold>C</bold> <bold>α</bold>+<bold>ϵ</bold> to the model. Three special IREs are considered and studied under the mean-squared error criterion and the prediction error sum of squares criterion. The simulations demonstrate that the proposed estimators are effective and recommendable, especially when multicollinearity is severe.
Year of publication: |
2013
|
---|---|
Authors: | Liu, Xu-Qing ; Gao, Feng ; Yu, Zhen-Feng |
Published in: |
Journal of Applied Statistics. - Taylor & Francis Journals, ISSN 0266-4763. - Vol. 40.2013, 1, p. 209-220
|
Publisher: |
Taylor & Francis Journals |
Saved in:
Saved in favorites
Similar items by person
-
Liu, Xu-Qing, (2012)
-
Quadratic prediction and quadratic sufficiency in finite populations
Liu, Xu-Qing, (2009)
-
Quadratic prediction problems in finite populations
Liu, Xu-Qing, (2007)
- More ...