Improvement of Kriging interpolation with learning kernel in environmental variables study
| Year of publication: |
2022
|
|---|---|
| Authors: | Xu, Te ; Liu, Yongxia ; Tang, Lixin ; Liu, Chang |
| Published in: |
International journal of production research. - London [u.a.] : Taylor & Francis, ISSN 1366-588X, ZDB-ID 1485085-0. - Vol. 60.2022, 4, p. 1284-1297
|
| Subject: | machine learning | Estimation of distribution algorithms | Kriging | least-squares support vector machine | spatial interpolation | Künstliche Intelligenz | Artificial intelligence | Algorithmus | Algorithm | Mustererkennung | Pattern recognition | Schätztheorie | Estimation theory | Prognoseverfahren | Forecasting model |
-
Zhu, Bangzhu, (2022)
-
Algorithms for multiclass classification and regularized regression
Burg, Gerrit Jan Johannes van den, (2018)
-
Liu, Hongcheng, (2022)
- More ...
-
M/PH/C queue under a congestion-based staffing policy with applications in steel industry operations
Jia, Yanhe, (2021)
-
An exact algorithm for the unidirectional quay crane scheduling problem with vessel stability
Sun, Defeng, (2021)
-
A stochastic production planning problem with nonlinear cost
Tang, Lixin, (2012)
- More ...