Improving automobile insurance claims frequency prediction with telematics car driving data
Year of publication: |
2022
|
---|---|
Authors: | Meng, Shengwang ; Wang, He ; Shi, Yanlin ; Gao, Guangyuan |
Published in: |
ASTIN bulletin : the journal of the International Actuarial Association. - Cambridge : Cambridge Univ. Press, ISSN 1783-1350, ZDB-ID 2148228-7. - Vol. 52.2022, 2, p. 363-391
|
Subject: | automobile insurance pricing | claims frequency | generalized linear model | limited fluctuation credibility model | one-dimensional convolutional neural network | Telematics car driving data | Kfz-Versicherung | Automobile insurance | Kraftfahrzeug | Motor vehicle | Neuronale Netze | Neural networks | Versicherungsmathematik | Actuarial mathematics | Kfz-Industrie | Automotive industry | Prognoseverfahren | Forecasting model | Schätztheorie | Estimation theory | Verkehrsunfall | Traffic accident | Schätzung | Estimation | Straßenverkehr | Road transport | Telekommunikation | Telecommunications |
-
What can we learn from telematics car driving data : a survey
Gao, Guangyuan, (2022)
-
Convolutional neural network classification of telematics car driving data
Gao, Guangyuan, (2019)
-
Telematic driving profile classification in car insurance pricing
Weidner, Wiltrud, (2017)
- More ...
-
Dispersion modelling of outstanding claims with double Poisson regression models
Gao, Guangyuan, (2021)
-
Stochastic payments per claim incurred
Gao, Guangyuan, (2019)
-
Stochastic Payments per Claim Incurred
Gao, Guangyuan, (2018)
- More ...