Improving corporate bond recovery rate prediction using multi-factor support vector regressions
Year of publication: |
1 December 2018
|
---|---|
Authors: | Nazemi, Abdolreza ; Heidenreich, Konstantin ; Fabozzi, Frank J. |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 271.2018, 2 (1.12.), p. 664-675
|
Subject: | Recovery rate | Least-squares support vector regression methods | Sparse principal component analysis | Kernel principal component analysis | Gradient boosting | Regressionsanalyse | Regression analysis | Prognoseverfahren | Forecasting model | Unternehmensanleihe | Corporate bond | Theorie | Theory | Hauptkomponentenanalyse | Principal component analysis | Mustererkennung | Pattern recognition |
-
Support vector regression for loss given default modelling
Yao, Xiao, (2015)
-
Kurtcan, Betul Durkaya, (2023)
-
Tai, Chung-Ching, (2019)
- More ...
-
Fuzzy decision fusion approach for loss-given-default modeling
Nazemi, Abdolreza, (2017)
-
Intertemporal Defaulted Bond Recoveries Prediction Via Machine Learning
Nazemi, Abdolreza, (2018)
-
Incorporating Financial News for Forecasting Bitcoin Prices Based on Long Short-Term Memory Networks
Jakubik, Johannes, (2021)
- More ...