Improving earnings predictions and abnormal returns with machine learning
| Year of publication: |
2022
|
|---|---|
| Authors: | Hunt, Joshua O. S. ; Myers, James N. ; Myers, Linda A. |
| Published in: |
Accounting horizons : a quarterly publication of the American Accounting Association. - Sarasota, Fla. : American Accounting Association, ISSN 0888-7993, ZDB-ID 638756-1. - Vol. 36.2022, 1, p. 131-149
|
| Subject: | data analytics | machine learning | stepwise logit regression | random forest | earnings prediction | returns prediction | trading strategies | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Kapitalmarktrendite | Capital market returns | Regressionsanalyse | Regression analysis | Gewinnprognose | Earnings announcement | Logit-Modell | Logit model |
-
Asset return prediction via machine learning
Zhang, Liangliang, (2019)
-
A cross-sectional machine learning approach for hedge fund return prediction and selection
Wu, Wenbo, (2021)
-
Machine learning and the cross-section of emerging market stock returns
Hanauer, Matthias Xaver, (2023)
- More ...
-
Investors' Misweighting of Firm‐Level Information and the Market's Expectations of Earnings
Keskek, Sami, (2020)
-
Do Individual Investors Drive Post-Earnings Announcement Drift? Direct Evidence from Personal Trades
Hirshleifer, David, (2004)
-
Do Individual Investors Cause Post-Earnings Announcement Drift? Direct Evidence from Personal Trades
Hirshleifer, David A., (2008)
- More ...