Improving explainability of major risk factors in artificial neural networks for auto insurance rate regulation
| Year of publication: |
2021
|
|---|---|
| Authors: | Xie, Shengkun |
| Published in: |
Risks : open access journal. - Basel : MDPI, ISSN 2227-9091, ZDB-ID 2704357-5. - Vol. 9.2021, 7, Art.-No. 126, p. 1-21
|
| Subject: | rate-making | machine learning | insurance rate filing | artificial neural network | explainabledata analytics | variable importance | Neuronale Netze | Neural networks | Künstliche Intelligenz | Artificial intelligence | Kfz-Versicherung | Automobile insurance | Versicherung | Insurance | Risiko | Risk | Theorie | Theory |
| Type of publication: | Article |
|---|---|
| Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
| Language: | English |
| Other identifiers: | 10.3390/risks9070126 [DOI] hdl:10419/258212 [Handle] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Econometrics of insurance based on telematics information and machine learning
Guillén, Montserrat, (2025)
-
Blended insurance scheme : a synergistic conventional-index insurance mixture
Zhang, Jinggong, (2024)
-
Xie, Shengkun, (2021)
- More ...
-
Xie, Shengkun, (2024)
-
Classification of territory risk by generalized linear and generalized linear mixed models
Xie, Shengkun, (2023)
-
Cunha, Henrique Correa da, (2022)
- More ...