Improving Feature Extraction by Replacing the Fisher Criterion by an Upper Error Bound
Year of publication: |
2005
|
---|---|
Authors: | Weihs, Claus ; Luebke, Karsten |
Publisher: |
Dortmund : Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen |
Subject: | Diskriminanzanalyse | Theorie | Fisher criterion | Linear discriminant analysis | Feature extraction |
Series: | Technical Report ; 2005,19 |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
Other identifiers: | 499044010 [GVK] hdl:10419/22610 [Handle] RePEc:zbw:sfb475:200519 [RePEc] |
Source: |
-
Improving Feature Extraction by Replacing the Fisher Criterion by an Upper Error Bound
Weihs, Claus, (2005)
-
Real-time process monitoring using kernel distances
Wei, Qingming, (2016)
-
Loan decision models for the Jordanian commercial banks
Eletter, Shorouq Fathi, (2017)
- More ...
-
Weihs, Claus, (2004)
-
KMC/EDAM : A new approach for the visualization of K-Means Clustering results
Weihs, Claus, (2004)
-
Latent Factor Prediction Pursuit for Rank Deficient Regressors
Luebke, Karsten, (2004)
- More ...