Improving predictions of technical inefficiency
Year of publication: |
2024
|
---|---|
Authors: | Amsler, Christine Elaine ; James, Robert ; Prokhorov, Artem ; Schmidt, Peter |
Published in: |
Essays in honor of Subal Kumbhakar. - Leeds : Emerald Publishing, ISBN 978-1-83797-875-5. - 2024, p. 309-328
|
Subject: | Stochastic frontier analysis | inefficiency scores | copulas | localrandom forest | nonparametrics | machine learning | synthetic data | Technische Effizienz | Technical efficiency | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory | Prognoseverfahren | Forecasting model | Nichtparametrisches Verfahren | Nonparametric statistics | Multivariate Verteilung | Multivariate distribution | Effizienz | Efficiency | Data-Envelopment-Analyse | Data envelopment analysis | Stochastischer Prozess | Stochastic process | Schätzung | Estimation |
-
España, Victor J., (2025)
-
Panel stochastic frontier analysis with dependent error terms
El Mehdi, Rachida, (2021)
-
Bayesian Artificial Neural Networks for frontier efficiency analysis
Tsionas, Efthymios G., (2023)
- More ...
-
Improving Predictions of Technical Inefficiency
James, Robert, (2022)
-
Using copulas to model time dependence in stochastic frontier models
Amsler, Christine Elaine, (2014)
-
Endogenous environmental variables in stochastic frontier models
Amsler, Christine Elaine, (2017)
- More ...