Improving quantile forecasts via realized double hysteretic GARCH model in stock markets
Year of publication: |
2024
|
---|---|
Authors: | Chen, Cathy W. S. ; Chien, Cindy T. H. |
Subject: | Expected shortfall | Hysteretic effect | Markov chain Monte Carlo method | Murphy diagrams | Nonlinear model | Skew Student's t distribution | Value-at-risk | Risikomaß | Risk measure | ARCH-Modell | ARCH model | Statistische Verteilung | Statistical distribution | Markov-Kette | Markov chain | Monte-Carlo-Simulation | Monte Carlo simulation | Theorie | Theory | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Aktienmarkt | Stock market | Volatilität | Volatility | Nichtlineare Regression | Nonlinear regression | Schätzung | Estimation | Börsenkurs | Share price |
-
Measuring asset market linkages : nonlinear dependence and tail risk
Escanciano, Juan Carlos, (2017)
-
A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting
Wang, Chao, (2024)
-
Tail risk forecasting with semiparametric regression models by incorporating overnight information
Chen, Cathy W. S., (2024)
- More ...
-
Bayesian non‐linear quantile effects on modelling realized kernels
Dong, Manh Cuong, (2021)
-
Bayesian modeling and forecasting of Value‐at‐Risk via threshold realized volatility
Chen, Cathy W. S., (2018)
-
Chen, Cathy W. S., (2019)
- More ...