Improving value-at-risk prediction under model uncertainty
| Year of publication: |
2023
|
|---|---|
| Authors: | Peng, Shige ; Yang, Shuzhen ; Yao, Jianfeng |
| Published in: |
Journal of financial econometrics. - Oxford : Oxford University Press, ISSN 1479-8417, ZDB-ID 2065613-0. - Vol. 21.2023, 1, p. 228-259
|
| Subject: | empirical finance | G-normal distribution | model uncertainty | sublinear expectation | value-at-risk | Risikomaß | Risk measure | Prognoseverfahren | Forecasting model | Risiko | Risk | Theorie | Theory | Entscheidung unter Unsicherheit | Decision under uncertainty | Risikomanagement | Risk management | Statistische Verteilung | Statistical distribution | ARCH-Modell | ARCH model | Kapitaleinkommen | Capital income |
-
Forecasting tail risk of skewed financial returns having exponential-polynomial tails
Antwi, Albert, (2024)
-
Dynamic probabilistic forecasting with uncertainty
Benth, Fred Espen, (2021)
-
Does the tail risk index matter in forecasting downside risk?
Hung, Jui-Cheng, (2023)
- More ...
-
A RMT-based LM test for error cross-sectional independence in large heterogeneous panel data models
Bailey, Natalia, (2022)
-
A comparative study of minimum wage and employment in China and in the United States
Fu, Duanxiang, (2019)
-
Forecasting high-dimensional realized volatility matrices using a factor model
Shen, Keren, (2020)
- More ...