Incorporating Financial News for Forecasting Bitcoin Prices Based on Long Short-Term Memory Networks
Year of publication: |
[2021]
|
---|---|
Authors: | Jakubik, Johannes ; Nazemi, Abdolreza ; Geyer-Schulz, Andreas ; Fabozzi, Frank J. |
Publisher: |
[S.l.] : SSRN |
Subject: | Prognoseverfahren | Forecasting model | Finanzmarkt | Financial market | Virtuelle Währung | Virtual currency | Börsenkurs | Share price | Prognose | Forecast |
Extent: | 1 Online-Ressource (34 p) |
---|---|
Series: | |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments November 19, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3733398 [DOI] |
Classification: | G14 - Information and Market Efficiency; Event Studies ; G10 - General Financial Markets. General ; C14 - Semiparametric and Nonparametric Methods |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Predicting Financial Volatility : High-Frequency Time-Series Forecasts Vis-a-Vis Implied Volatility
Martens, Martin, (2008)
-
Volatility Modeling Using High Frequency Data to Identify Cryptocurrency Bubbles
Gautam, Vijay, (2023)
-
Understanding Jumps in High Frequency Digital Asset Markets
Saef, Danial, (2021)
- More ...
-
Incorporating financial news for forecasting Bitcoin prices based on long short-term memory networks
Jakubik, Johannes, (2023)
-
Interpretable Machine Learning for Creditor Recovery Rates
Nazemi, Abdolreza, (2022)
-
High-dimensional macroeconomic stress testing of corporate recovery rate
Nazemi, Abdolreza, (2024)
- More ...