Independence Distribution Preserving Covariance Structures for the Multivariate Linear Model
Consider the multivariate linear model for the random matrixYn-p~MN(XB, V[circle times operator][Sigma]), whereBis the parameter matrix,Xis a model matrix, not necessarily of full rank, andV[circle times operator][Sigma] is annp-nppositive-definite dispersion matrix. This paper presents sufficient conditions on the positive-definite matrixVsuch that the statistics for testingH0: CB=0vsHa: CB[not equal to]0have the same distribution as under the i.i.d. covariance structureI[circle times operator][Sigma].
Year of publication: |
1999
|
---|---|
Authors: | Young, Dean M. ; Seaman, John W. ; Meaux, Laurie M. |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 68.1999, 2, p. 165-175
|
Publisher: |
Elsevier |
Keywords: | multivariate quadratic forms Wishart random matrices model robustness common nonnegative definite solutions to a pair of matrix equations |
Saved in:
Saved in favorites
Similar items by person
-
Young, Dean M., (1994)
-
A Kolmogorov inequality for the sum of independent Bernoulli random variables with unequal means
Turner, Danny W., (1995)
-
Improved Kolmogorov inequalities for the binomial distribution
Turner, Danny W., (1992)
- More ...