Inference using simulated neural moments
Year of publication: |
2021
|
---|---|
Authors: | Creel, Michael D. |
Published in: |
Econometrics : open access journal. - Basel : MDPI, ISSN 2225-1146, ZDB-ID 2717594-7. - Vol. 9.2021, 4, Art.-No. 35, p. 1-15
|
Subject: | approximate Bayesian computing | jump diffusion | Laplace-type estimators | neural networks | simulated moments | Schätztheorie | Estimation theory | Neuronale Netze | Neural networks | Simulation | Monte-Carlo-Simulation | Monte Carlo simulation | Bayes-Statistik | Bayesian inference | Momentenmethode | Method of moments | Wahrscheinlichkeitsrechnung | Probability theory | Induktive Statistik | Statistical inference | Stochastischer Prozess | Stochastic process |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/econometrics9040035 [DOI] hdl:10419/247625 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Inference using simulated neural moments
Creel, Michael D., (2020)
-
Neural nets for indirect inference
Creel, Michael D., (2016)
-
Witzany, Jiří, (2023)
- More ...
-
Likelihood-Based Approaches to Modeling Demand for Medical Care
Creel, Michael D., (2001)
-
Welfare Estimation Using The Fourier Form: Simulation Evidence For The Recreation Demand Case
Creel, Michael D., (1997)
-
Modeling hunting demand in the presence of a bag limit, with tests of alternative specifications
Creel, Michael D., (1992)
- More ...