Inferring Gene Networks using Robust Statistical Techniques
Inference of gene networks is an important step in understanding cellular dynamics. In this work, a novel algorithm is proposed for inferring gene networks from gene expression data using linear ordinary differential equations. Under the proposed method, a combination of known statistical tools including partial least squares (PLS), leave-one-out jackknifing, and the Akaike information criterion (AIC) are used for robust estimation of gene connectivity matrix. The proposed approach is tested and validated using a computer simulated gene network model and an experimental data on a nine gene network in Eschericia coli.