Influence of particle shape and sample width on uniaxial compression of assembly of prolate spheroids examined by discrete element method
We use numerical simulations based on the discrete element method (DEM) to study the response of a cuboidal assembly of spherical (diameter d) or spheroidal particles to uniaxial compression. This study examines the influences of slight deviations from the spherical shape of particles or of the thickness of cuboidal samples on the packing and mechanical characteristics of the assembly. The spheroidal particles were fabricated by the multisphere method. Eight different particle shapes were considered, each with the same volume and with aspect ratios α from 1.0 to 2.5. The final vertical height and larger horizontal depth of the cuboidal deposit were 15d, whereas the thickness ranged from 1.025d to 10d. Upon increasing the assembly thickness or deviating from a spherical shape, numerical examinations by the DEM revealed clear differences in the packing structure and uniaxial compression of assemblies of spheroidal particles. The departure from a spherical shape results in intense changes in contact network, which is manifested as changes in the volume fraction, mean number of contacts per particle, and ordering of the deposits. For the more elongated particles, the pressure ratio as a function of spheroid aspect ratio reached nearly constant values regardless of the sample thickness.
Year of publication: |
2014
|
---|---|
Authors: | Parafiniuk, Piotr ; Molenda, Marek ; Horabik, Józef |
Published in: |
Physica A: Statistical Mechanics and its Applications. - Elsevier, ISSN 0378-4371. - Vol. 416.2014, C, p. 279-289
|
Publisher: |
Elsevier |
Subject: | Uniaxial compression | Discrete element method | Granular mechanics | Prolate spheroids | 2D–3D transition |
Saved in:
Online Resource
Saved in favorites
Similar items by subject
-
Numerical study of free-fall arches in hopper flows
Lin, P., (2015)
-
Chand, Ram, (2012)
-
Computational modeling of masonry structures using the discrete element method
Sarhosis, Vasilis, (2016)
- More ...