Information Bottlenecks, Causal States, and Statistical Relevance Bases: How to Represent Relevant Information in Memoryless Transduction
Discovering relevant, but possibly hidden, variables is a key step in constructing useful and predictive theories about the natural world. This brief note explains the connections between three approaches to this problem: the recently introduced information-bottleneck method, the computational mechanics approach to inferring optimal models, and Salmon's statistical relevance basis.