Interpretable support vector machines for functional data
| Year of publication: |
2014
|
|---|---|
| Authors: | Martin-Barragan, Belen ; Lillo, Rosa ; Romo, Juan |
| Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 232.2014, 1 (1.1.), p. 146-155
|
| Subject: | Data mining | Interpretability | Classification | Linear programming | Regularization methods | Functional data analysis | Data Mining | Mustererkennung | Pattern recognition | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Klassifikation | Prognoseverfahren | Forecasting model |
-
Depth-based support vector classifiers to detect data nests of rare events
Dyckerhoff, Rainer, (2021)
-
A new model of data classification based on generalized support vector machines
Cusano, Claudio, (2004)
-
On a strategy to develop robust and simple tariffs from motor vehicle insurance data
Christmann, Andreas, (2004)
- More ...
-
Interpretable support vector machines for functional data
Martin-Barragan, Belen, (2014)
-
Spatial depth-based classification for functional data
Sguera, Carlo, (2014)
-
Handwritten digit classification
Giuliodori, Andrea, (2011)
- More ...