Intertemporal defaulted bond recoveries prediction via machine learning
Year of publication: |
2022
|
---|---|
Authors: | Nazemi, Abdolreza ; Baumann, Friedrich ; Fabozzi, Frank J. |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 297.2022, 3 (16.3.), p. 1162-1177
|
Subject: | Finance | Risk-management | Recovery rates | Machine learning | News-based analysis | Power expectation propagation | Künstliche Intelligenz | Artificial intelligence | Kreditrisiko | Credit risk | Prognoseverfahren | Forecasting model | Anleihe | Bond | Insolvenz | Insolvency | Risikomanagement | Risk management |
-
Explainable models of credit losses
Bastos, João A., (2022)
-
Bond defaults in China : using machine learning to make predictions
Cui, Bei, (2025)
-
Leveraging prices from credit and equity option markets for portfolio risk management
Bégin, Jean-François, (2024)
- More ...
-
High-dimensional macroeconomic stress testing of corporate recovery rate
Nazemi, Abdolreza, (2024)
-
Life after default : dealer intermediation and recovery in defaulted corporate bonds
Baumann, Friedrich, (2023)
-
Life after default: dealer intermediation and recovery in defaulted corporate bonds
Baumann, Friedrich, (2023)
- More ...