Intraday shelf replenishment decision support for perishable goods
Year of publication: |
2021
|
---|---|
Authors: | Huber, Jakob ; Stuckenschmidt, Heiner |
Published in: |
International journal of production economics. - Amsterdam [u.a.] : Elsevier, ISSN 0925-5273, ZDB-ID 1092526-0. - Vol. 231.2021, p. 1-14
|
Subject: | Forecasting | Scheduling | Decision support | Intraday demand | Retailing | Machine learning | Management-Informationssystem | Management information system | Künstliche Intelligenz | Artificial intelligence | Scheduling-Verfahren | Scheduling problem | Prognoseverfahren | Forecasting model | Lagerhaltungsmodell | Inventory model | Theorie | Theory | Einzelhandel | Retail trade | Lagermanagement | Warehouse management |
-
Data-driven decision support for perishable goods
Huber, Jakob, (2019)
-
Forecasting intermittent demand for inventory management by retailers : a new approach
Tian, Xin, (2021)
-
Classification-based model selection in retail demand forecasting
Ulrich, Matthias, (2022)
- More ...
-
A Data-Driven Newsvendor Problem : From Data to Decision
Huber, Jakob, (2019)
-
A data-driven newsvendor problem : from data to decision
Huber, Jakob, (2019)
-
Daily retail demand forecasting using machine learning with emphasis on calendric special days
Huber, Jakob, (2020)
- More ...