Intraday volatility transmission in global energy markets : a Bayesian nonparametric approach
| Year of publication: |
2025
|
|---|---|
| Authors: | Zaharieva, Martina Danielova ; Virbickaitė, Audronė ; Santos, André A. P. |
| Published in: |
Journal of commodity markets : JCM. - Amsterdam : Elsevier, ISSN 2405-8505, ZDB-ID 2851869-X. - Vol. 39.2025, Art.-No. 100496, p. 1-27
|
| Subject: | COVID-19 | Credible intervals | Dirichlet process mixture (DPM) | Marginal log likelihood | Value-at-Risk | Volatility spillovers | Volatilität | Volatility | Coronavirus | ARCH-Modell | ARCH model | Bayes-Statistik | Bayesian inference | Nichtparametrisches Verfahren | Nonparametric statistics | Energiemarkt | Energy market | Risikomaß | Risk measure | Theorie | Theory | Spillover-Effekt | Spillover effect |
-
Ji, Qiang, (2018)
-
Jebabli, Ikram, (2022)
-
Bayesian estimation for a semiparametric nonlinear volatility model
Hu, Shuowen, (2021)
- More ...
-
Otimização de carteiras baseada em modelos de correlações condicionais
Santos, André A. P., (2016)
-
Can machine learning help to select portfolios of mutual funds?
DeMiguel, Victor, (2021)
-
Comparing High Dimensional Conditional Covariance Matrices : Implications for Portfolio Selection
Moura, Guilherme Valle, (2020)
- More ...