Inventory models under uncertainty: an adaptive approach
Consider the following nonlinear programming (NLP) problem: minxg0(x)=minx∫ψ(x, y)fY(y, x) dy=min E[ψ0(x, Y)]s.t.gj(x)=∫ψj(x, y)ƒY(x, y) dy=E[ψj(x, Y)] ⩽ 0, j=1,…,M,where x ∈ X ⊂ Rn,y∈ D ⊂ Rm, ψj(x,Y), j=0,1,…,M are given functions, and fT(y, x)is a probability density function depending on a vector of parameters x.
Year of publication: |
1986
|
---|---|
Authors: | Rubinstein, Y.R. ; Kreimer, J. |
Published in: |
Mathematics and Computers in Simulation (MATCOM). - Elsevier, ISSN 0378-4754. - Vol. 28.1986, 3, p. 169-188
|
Publisher: |
Elsevier |
Saved in:
Saved in favorites
Similar items by person
-
About one Monte Carlo method for solving linear equations
Rubinstein, Y.R., (1983)
-
Efficiency of the random search method
Rubinstein, Y.R., (1982)
-
PAPERS - Effectiveness-Analysis of Real-Time Data Acquisition and Processing Multichannel Systems
Kreimer, J., (2002)
- More ...