Inventory routing problem of automotive parts considering time-varying demands : a machine learning enhanced branch-and-price approach
| Year of publication: |
2025
|
|---|---|
| Authors: | Wang, Yu ; Zheng, Renrong ; Liang, Chengji ; Shi, Jian |
| Published in: |
Transportation research : an international journal. - Oxford : Pergamon, Elsevier Science, ISSN 1878-5794, ZDB-ID 2013782-5. - Vol. 202.2025, Art.-No. 104297, p. 1-24
|
| Subject: | Automotive inbound logistics | Branch-and-price | Inventory routing | Machine learning | Time-varying demands | Künstliche Intelligenz | Artificial intelligence | Tourenplanung | Vehicle routing problem | Lagermanagement | Warehouse management | Kfz-Industrie | Automotive industry | Lieferkette | Supply chain | Logistik | Logistics | Bestandsmanagement | Inventory management | Automobilzulieferindustrie | Automotive supplier industry | Algorithmus | Algorithm |
-
Alvarez, Aldair, (2020)
-
Chandra, Saurabh, (2013)
-
Scenario predict-then-optimize for data-driven online inventory routing
Jia, Menglei, (2025)
- More ...
-
Multiobjective hybrid genetic algorithm for quay crane scheduling in berth allocation planning
Liang, Chengji, (2009)
-
Stack-based yard template generation in automated container terminals under uncertainty
Huang, Mingzhong, (2025)
-
Zheng, Jianghuai, (2011)
- More ...