Investigating customer churn in banking : a machine learning approach and visualization app for data science and management
Year of publication: |
2024
|
---|---|
Authors: | Singh, Pahul Preet ; Anik, Fahim Islam ; Senapati, Rahul ; Sinha, Arnav ; Sakib, Nazmus ; Hossain, Eklas |
Published in: |
Data science and management : DSM. - [Amsterdam] : Elsevier B.V., ISSN 2666-7649, ZDB-ID 3108238-5. - Vol. 7.2024, 1, p. 7-16
|
Subject: | Bank customer attrition | Churn prediction | Machine learning | Random forest | XGboost | Künstliche Intelligenz | Artificial intelligence | Beziehungsmarketing | Relationship marketing | Data Mining | Data mining | Visualisierung | Visualization | Prognoseverfahren | Forecasting model | Konsumentenverhalten | Consumer behaviour |
-
Chlebus, Marcin, (2020)
-
Distributed model for customer churn prediction using convolutional neural network
Tariq, Muhammad Usman, (2022)
-
Incorporating usage data for B2B churn prediction modeling
Sanchez Ramirez, Juliana, (2024)
- More ...
-
Economic Resilience in the times of Public Health Shock : The Case of the US States
Osman, Syed Muhammad Ishraque, (2022)
-
Sakib, Nazmus, (2021)
-
Frenemies : Foreign Imposed Alliance Treaties and Authoritarianism
Sakib, Nazmus, (2022)
- More ...