Investor confidence and forecastability of US stock market realized volatility : evidence from machine learning
Year of publication: |
2023
|
---|---|
Authors: | Gupta, Rangan ; Nel, Jacobus ; Pierdzioch, Christian |
Published in: |
The journal of behavioral finance : a publication of the Institute of Psychology and Markets and LEA. - New York, NY [u.a.] : Routledge, Taylor & Francis Group, ISSN 1542-7579, ZDB-ID 2111535-7. - Vol. 24.2023, 1, p. 111-122
|
Subject: | Forecasting | Investor confidence | Machine learning | Macroeconomic and financial predictors | Realized volatility | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Aktienmarkt | Stock market | Anlageverhalten | Behavioural finance | USA | United States | Finanzmarkt | Financial market | Kapitaleinkommen | Capital income | Prognose | Forecast |
-
Forecasting stock market dynamics using bidirectional long short-term memory
Park, Daehyeon, (2021)
-
Machine-learning stock market volatility : predictability, drivers, and economic value
Díaz, Juan, (2024)
-
The new finance : overreaction, complexity, and uniqueness
Haugen, Robert A., (2004)
- More ...
-
Nel, Jacobus, (2024)
-
Stock market volatility and multi-scale positive and negative bubbles
Gupta, Rangan, (2025)
-
Nel, Jacobus, (2022)
- More ...