L1-optimal estimates for a regression type function in Rd
Let X1, X2, ..., Xn be random vectors that take values in a compact set in Rd, d >= 1. Let Y1, Y2, ..., Yn be random variables ("the responses") which conditionally on X1 = x1, ..., Xn = xn are independent with densities f(y xi, [theta](xi)), i = 1, ..., n. Assuming that [theta] lives in a sup-norm compact space [Theta]q,d of real valued functions, an optimal L1-consistent estimator of [theta] is constructed via empirical measures. The rate of convergence of the estimator to the true parameter [theta] depends on Kolmogorov's entropy of [Theta]q,d.
Year of publication: |
1992
|
---|---|
Authors: | Yatracos, Yannis G. |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 40.1992, 2, p. 213-220
|
Publisher: |
Elsevier |
Keywords: | minimum distance estimation empirical measures nonparametric regression rates of convergence Kolmogorov's entropy regression type function |
Saved in:
Saved in favorites
Similar items by person
-
Artificially augmented samples, shrinkage, and mean squared error reduction
Yatracos, Yannis G., (2005)
-
RESIDUAL'S INFLUENCE INDEX (RINFIN), BAD LEVERAGE AND UNMASKING IN HIGH DIMENSIONAL L2-REGRESSION
Yatracos, Yannis G., (2018)
-
Yatracos, Yannis G., (2018)
- More ...