LADE-based inferences for autoregressive models with heavy-tailed G-GARCH(1, 1) noise
Year of publication: |
2022
|
---|---|
Authors: | Zhang, Xingfa ; Zhang, Rongmao ; Li, Yuan ; Ling, Shiqing |
Published in: |
Journal of econometrics. - Amsterdam [u.a.] : Elsevier, ISSN 0304-4076, ZDB-ID 184861-6. - Vol. 227.2022, 1, p. 228-240
|
Subject: | AR model | G-GARCH-model | Heavy tails | LADE | Autokorrelation | Autocorrelation | Statistische Verteilung | Statistical distribution | Induktive Statistik | Statistical inference | Schätztheorie | Estimation theory | Zeitreihenanalyse | Time series analysis |
-
Inference for the tail index of a GARCH(1,1) model and an AR(1) model with ARCH(1) errors
Zhang, Rongmao, (2019)
-
Expected shortfall estimation and Gaussian inference for infinite variance time series
Hill, Jonathan B., (2015)
-
Unit root quantile autoregression inference
Koenker, Roger, (2004)
- More ...
-
The ZD-GARCH model : a new way to study heteroscedasticity
Li, Dong, (2018)
-
Asymptotic inference for ar models with heavy-tailed g-Garch noises
Zhang, Rongmao, (2015)
-
On a threshold double autoregressive model
Li, Dong, (2016)
- More ...