Leading indicators and maritime safety: predicting future risk with a machine learning approach
Year of publication: |
2020
|
---|---|
Authors: | Kretschmann, Lutz |
Published in: |
Journal of shipping and trade. - [London] : SpringerOpen, ISSN 2364-4575, ZDB-ID 2843080-3. - Vol. 5.2020, 19, p. 1-22
|
Subject: | Maritime safety | Accident prevention | Safety management | Risk prediction | Leading indicators | Machine learning | Künstliche Intelligenz | Artificial intelligence | Risikomanagement | Risk management | Wirtschaftsindikator | Economic indicator | Prognoseverfahren | Forecasting model | Seeverkehrssicherheit | Arbeitsschutz | Occupational safety | Frühindikator | Leading indicator | Prognose | Forecast | Risiko | Risk |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.1186/s41072-020-00071-1 [DOI] hdl:10419/298882 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
New forecasting methods for an old problem : predicting 147 years of systemic financial crises
Plessis, Emile du, (2022)
-
New forecasting methods for an old problem : predicting 147 years of systemic financial crises
Plessis, Emile du, (2025)
-
A survey on deep learning for financial risk prediction
Peng, Kuashuai, (2021)
- More ...
-
Forecasting worldwide empty container availability with machine learning techniques
Martius, Christoph, (2022)
-
Leading indicators and maritime safety: Predicting future risk with a machine learning approach
Kretschmann, Lutz, (2020)
-
Simulation-framework for illicit-goods detection in large volume freight
Kretschmann, Lutz, (2017)
- More ...