Learning for routing : a guided review of recent developments and future directions
| Year of publication: |
2025
|
|---|---|
| Authors: | Zhou, Fangting ; Lischka, Attila ; Kulcsár, Balázs ; Wu, Jiaming ; Haghir Chehreghani, Morteza ; Laporte, Gilbert |
| Published in: |
Transportation research : an international journal. - Oxford : Pergamon, Elsevier Science, ZDB-ID 2013782-5. - Vol. 202.2025, Art.-No. 104278, p. 1-35
|
| Subject: | Combinatorial optimization | Machine learning | Reinforcement learning | Routing problems | Traveling salesman problem | Vehicle routing problem | Tourenplanung | Lernprozess | Learning process | Künstliche Intelligenz | Artificial intelligence | Lernen | Learning | Theorie | Theory | Rundreiseproblem | Travelling salesman problem | Algorithmus | Algorithm |
-
Sun, Yuan, (2021)
-
Learning to guide local search optimisation for routing problems
Sultana, Nasrin, (2024)
-
Taillard, Éric D., (2023)
- More ...
-
Integrated charging scheduling and operational control for an electric bus network
Lacombe, Rémi, (2024)
-
Dynamic stochastic electric vehicle routing with safe reinforcement learning
Basso, Rafael, (2022)
-
A concise guide to the travelling salesman problem
Laporte, Gilbert, (2010)
- More ...