Learning for spatial branching : an algorithm selection approach
Year of publication: |
2023
|
---|---|
Authors: | Ghaddar, Bissan ; Gómez-Casares, Ignacio ; González-Díaz, Julio ; González-Rodríguez, Brais ; Pateiro-López, Beatriz ; Rodríguez-Ballesteros, Sofía |
Published in: |
INFORMS journal on computing : JOC ; charting new directions in operations research and computer science ; a journal of the Institute for Operations Research and the Management Sciences. - Linthicum, Md. : INFORMS, ISSN 1526-5528, ZDB-ID 2004082-9. - Vol. 35.2023, 5, p. 1024-1043
|
Subject: | machine learning | non-linear optimization | polynomial optimization | spatial branching | statistical learning | Künstliche Intelligenz | Artificial intelligence | Algorithmus | Algorithm | Theorie | Theory | Lernprozess | Learning process | Mathematische Optimierung | Mathematical programming | Lernen | Learning |
-
Lodi, Andrea, (2020)
-
Optimization problems for machine learning : a survey
Gambella, Claudio, (2021)
-
Reinforcement learning and stochastic optimisation
Jaimungal, Sebastian, (2022)
- More ...
-
Global optimization for bilevel portfolio design : economic insights from the Dow Jones Index
González-Díaz, Julio, (2021)
-
Rodríguez-Ballesteros, Sofía, (2024)
-
On the estimation of the medial axis and inner parallel body
Cuevas, Antonio, (2014)
- More ...