Likelihood based inference for diffusion driven models
This paper provides methods for carrying out likelihood based inference for diffusion driven models, for example discretely observed multivariate diffusions, continuous time stochastic volatility models and counting process models. The diffusions can potentially be non-stationary. Although our methods are sampling based, making use of Markov chain Monte Carlo methods to sample the posterior distribution of the relevant unknowns, our general strategies and details are different from previous work along these lines. The methods we develop are simple to implement and simulation efficient. Importantly, unlike previous methods, the performance of our technique is not worsened, in fact it improves, as the degree of latent augmentation is increased to reduce the bias of the Euler approximation. In addition, our method is not subject to a degeneracy that afflicts previous techniques when the degree of latent augmentation is increased. We also discuss issues of model choice, model checking and filtering. The techniques and ideas are applied to both simulated and real data.
Year of publication: |
2004
|
---|---|
Authors: | Chib, Siddhartha ; Pitt, Michael K ; Shephard, Neil |
Institutions: | Finance Research Centre, Oxford University |
Saved in:
freely available
Saved in favorites
Similar items by person
-
Likelihood inference for discretely observed non-linear diffusions
Elerian, Ola, (2000)
-
Likelihood based inference for diffusion driven models
Chib, Siddhartha, (2004)
-
Likelihood-based estimation of latent generalised ARCH structures
Fiorentini, Gabriele, (2004)
- More ...