Local and global trend Bayesian exponential smoothing models
| Year of publication: |
2025
|
|---|---|
| Authors: | Smyl, Slawek ; Bergmeir, Christoph ; Dokumentov, Alexander ; Long, Xueying ; Wibowo, Erwin ; Schmidt, Daniel Francis |
| Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier Science, ISSN 0169-2070, ZDB-ID 1495951-3. - Vol. 41.2025, 1, p. 111-127
|
| Subject: | Bayesian Modelling | Exponential Smoothing | Monte-Carlo Methods | Probabilistic Forecasting | Time Series Forecasting | Zeitreihenanalyse | Time series analysis | Prognoseverfahren | Forecasting model | Theorie | Theory | Bayes-Statistik | Bayesian inference |
-
Variational Bayes in state space models : inferential and predictive accuracy
Frazier, David T., (2022)
-
Coupling LSTM neural networks and state-space models through analytically tractable inference
Vuong, Van-Dai, (2025)
-
Tripathi, Bhaskar, (2023)
- More ...
-
Scalable probabilistic forecasting in retail with gradient boosted trees : a practitioner's approach
Long, Xueying, (2025)
-
Forecasting : theory and practice
Petropoulos, Fotios, (2022)
-
A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting
Smyl, Slawek, (2020)
- More ...