A machine learning approach to formation of earthquake categories using hierarchies of magnitude and consequence to guide emergency management
Year of publication: |
2023
|
---|---|
Authors: | Atsa'am, Donald Douglas ; Gbaden, Terlumun ; Wario, Ruth Diko |
Published in: |
Data science and management : DSM. - [Amsterdam] : Elsevier B.V., ISSN 2666-7649, ZDB-ID 3108238-5. - Vol. 6.2023, 4, p. 208-213
|
Subject: | -means clustering | Earthquake categories | Earthquake classification | Magnitude and consequence | Resource allocation | Erdbeben | Earthquake | Künstliche Intelligenz | Artificial intelligence | Humanitäre Hilfe | Humanitarian aid |
-
Gul, Muhammet, (2020)
-
Eichenauer, Vera, (2019)
-
Virtual counterparts in disaster response : a machine learning perspective
Prabakaran, M., (2024)
- More ...
-
COVID-19 : extracting the pattern of morbidity and mortality among countries in the African region
Atsa'am, Donald Douglas, (2022)
-
A hybrid technique for partner selection in virtual enterprises
Musumba, George Wamamu, (2020)
- More ...