Machine learning approaches for auto insurance big data
Year of publication: |
2021
|
---|---|
Authors: | Hanafy, Mohamed ; Ming, Ruixing |
Published in: |
Risks : open access journal. - Basel : MDPI, ISSN 2227-9091, ZDB-ID 2704357-5. - Vol. 9.2021, 2/42, p. 1-23
|
Subject: | a confusion matrix | big data | classification analysis | insurance | machine learning | Künstliche Intelligenz | Artificial intelligence | Big Data | Big data | Kfz-Versicherung | Automobile insurance | Data Mining | Data mining | Versicherung | Insurance | Klassifikation | Classification | Algorithmus | Algorithm |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/risks9020042 [DOI] hdl:10419/258131 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
IBM predictive analytics reduces server downtime
Bogojeska, Jasmina, (2021)
-
Suthaharan, Shan, (2016)
-
Abdullahi, Bello, (2024)
- More ...
-
Machine learning approaches for auto insurance big data
Hanafy, Mohamed, (2021)
-
Modeling bursts and heavy tails in inter-arrival claims in non-life insurence
Hanafy, Mohamed, (2021)
-
Large deviations for the stochastic present value of aggregate claims in the renewal risk model
Jiang, Tao, (2015)
- More ...