Machine learning-based approach for predicting the altcoins price direction change from a high-frequency data of seven years based on socio-economic factors, Bitcoin prices, Twitter and news sentiments
Year of publication: |
2024
|
---|---|
Authors: | Gupta, Anamika ; Pandey, Gaurav ; Gupta, Rajan ; Das, Smaran ; Prakash, Ajmera ; Garg, Kartik ; Sarkar, Shreyan |
Published in: |
Computational economics. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9974, ZDB-ID 1477445-8. - Vol. 64.2024, 5, p. 2981-3026
|
Subject: | Altcoins | Artificial Intelligence | High-frequency | Lag | Machine learning | News sentiments | Socio-economic factors | Twitter sentiments | Künstliche Intelligenz | Artificial intelligence | Social Web | Social web | Prognoseverfahren | Forecasting model | Börsenkurs | Share price | Volatilität | Volatility | Mediale Berichterstattung | Media coverage | Anlageverhalten | Behavioural finance |
-
Walking down wall street with a tablet : a survey of stock market predictions using the web
Nardo, Michela, (2016)
-
Predicting abnormal trading behavior from internet rumor propagation : a machine learning approach
Cheng, Li-Chen, (2023)
-
Sentiment dynamics and volatility : a study based on GARCH-MIDAS and machine learning
Riso, Luigi, (2024)
- More ...
-
Analysis of Data Mining Techniques for Detection of Financial Statement Fraud
Gill, Nasib Singh, (2012)
-
Prevention and Detection of Financial Statement Fraud : A Data Mining Approach
Gill, Nasib S., (2009)
-
Introduction to Metaverse : Technology Landscape, Applications, and Challenges
Gupta, Rajan, (2023)
- More ...