Machine learning-based failure prediction in industrial maintenance : improving performance by sliding window selection
| Year of publication: |
2023
|
|---|---|
| Authors: | Leukel, Jörg ; González, Julian ; Riekert, Martin |
| Published in: |
International journal of quality & reliability management. - Bingley : Emerald, ISSN 1758-6682, ZDB-ID 1466792-7. - Vol. 40.2023, 6, p. 1449-1462
|
| Subject: | Failure prediction | Fault prediction | Industry 4.0 | Machine learning | Predictive maintenance | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Instandhaltung | Maintenance policy | Insolvenz | Insolvency | Algorithmus | Algorithm | Theorie | Theory |
-
A systematic review of time series algorithms and analytics in predictive maintenance
Syed, Md Asif Bin, (2025)
-
Predicting machine failures using machine learning and deep learning algorithms
Yadav, Devendra K., (2024)
-
Predictive asset availability optimization for underground trucks and loaders in the mining industry
Patil, Sunil D., (2021)
- More ...
-
Controlling property growth in product classification schemes : a data management approach
Leukel, Jörg, (2008)
-
A supply chain management approach to logistics ontologies in information systems
Leukel, Jörg, (2008)
-
Concepts for modeling hybrid products in the construction industry
Weiß, Daniel, (2008)
- More ...