Machine Learning Classification Methods and Portfolio Allocation : An Examination of Market Efficiency
Year of publication: |
2020
|
---|---|
Authors: | Bai, Yang |
Other Persons: | Pukthuanthong, Kuntara (contributor) |
Publisher: |
[2020]: [S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Effizienzmarkthypothese | Efficient market hypothesis | Portfolio-Management | Portfolio selection | Theorie | Theory | Klassifikation | Classification | Kapitaleinkommen | Capital income |
Extent: | 1 Online-Ressource (90 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments July 31, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3665051 [DOI] |
Classification: | C14 - Semiparametric and Nonparametric Methods ; c38 ; c55 ; G11 - Portfolio Choice ; G14 - Information and Market Efficiency; Event Studies |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Machine Learning in Financial Market Risk : VaR Exception Classification Model
Xiong, Wei, (2022)
-
Massacci, Daniele, (2020)
-
Machine Learning, Classification Algorithm and Cross Section of Stock/Bond Returns
Chin, Jern Tat, (2022)
- More ...
-
The influence of learning and updating speed on the growth of commercial websites
Wan, Xiaoji, (2012)
-
Gan, Hongcheng, (2014)
-
Robust empirical likelihood inference for generalized partial linear models with longitudinal data
Qin, Guoyou, (2012)
- More ...