Machine learning-driven solutions for sustainable and dynamic flexible job shop scheduling under worker absences and renewable energy variability
| Year of publication: |
2026
|
|---|---|
| Authors: | Destouet, Candice ; Tlahig, Houda ; Bettayeb, Belgacem ; Mazari, Bélahcène |
| Published in: |
Computers & operations research : an international journal. - Amsterdam [u.a.] : Elsevier, ISSN 0305-0548, ZDB-ID 1499736-8. - Vol. 186.2026, Art.-No. 107323, p. 1-19
|
| Subject: | Dynamic scheduling | Energy variation | Flexible job-shops | Machine learning | Sustainability | Worker absences | Scheduling-Verfahren | Scheduling problem | Erneuerbare Energie | Renewable energy | Fehlzeit | Work absence | Künstliche Intelligenz | Artificial intelligence | Produktionssteuerung | Production control | Nachhaltigkeit | Flexibles Fertigungssystem | Flexible manufacturing system | Algorithmus | Algorithm |
-
Makespan estimation in a flexible job-shop scheduling environment using machine learning
Tremblet, David, (2024)
-
Reddy, N. Sivarami, (2024)
-
Solving parallel machines job-shop scheduling problems by an adaptive algorithm
Gholami, Omid, (2014)
- More ...
-
Tlahig, Houda, (2009)
-
Tlahig, Houda, (2009)
-
Optimization of a city logistics transportation system with mixed passengers and goods
Masson, Renaud, (2017)
- More ...