A machine learning framework for interpretable predictions in patient pathways : the case of predicting ICU admission for patients with symptoms of sepsis
| Year of publication: |
2024
|
|---|---|
| Authors: | Zilker, Sandra ; Weinzierl, Sven ; Kraus, Mathias ; Zschech, Patrick ; Matzner, Martin |
| Published in: |
Health care management science : a new journal serving the international health care management community. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9389, ZDB-ID 2006272-2. - Vol. 27.2024, 2, p. 136-167
|
| Subject: | Deep learning | Interpretability | Interpretable machine learning | Interpretation plots | Patient pathway | Process prediction | Sepsis | Künstliche Intelligenz | Artificial intelligence | Patienten | Patients | Prognoseverfahren | Forecasting model | Krankenhaus | Hospital |
-
Zilker, Sandra, (2024)
-
Shin, Jongkyung, (2024)
-
Predicting the length-of-stay of pediatric patients using machine learning algorithms
Boff Medeiros, Natália, (2025)
- More ...
-
Zilker, Sandra, (2024)
-
A technology-specific process mining maturity grid for manufacturing and logistics
Dunzer, Sebastian, (2025)
-
Interpretable generalized additive neural networks
Kraus, Mathias, (2024)
- More ...