(Machine) learning from the COVID-19 lockdown about electricity market performance with a large share of renewables
Year of publication: |
2021
|
---|---|
Authors: | Graf, Christoph ; Quaglia, Federico ; Wolak, Frank A. |
Published in: |
Journal of environmental economics and management : JEEM ; the official journal of the Association of Environmental and Resource Economists. - Amsterdam : Elsevier, ISSN 0095-0696, ZDB-ID 188687-3. - Vol. 105.2021, p. 1-17
|
Subject: | Net demand shock | Re-dispatch market power | Real-time grid operation | Machine learning | European electricity market | Künstliche Intelligenz | Artificial intelligence | Coronavirus | Marktmacht | Market power | Elektrizitätswirtschaft | Electric power industry | Strompreis | Electricity price | Elektrizität | Electricity | Energiemarkt | Energy market | EU-Staaten | EU countries | Erneuerbare Energie | Renewable energy | Schock | Shock |
-
Pham, Thao, (2019)
-
Mountain, Bruce, (2013)
-
How does renewables competition affect forward contracting in electricity markets?
Ritz, Robert A., (2016)
- More ...
-
Graf, Christoph, (2020)
-
Graf, Christoph, (2020)
-
Graf, Christoph, (2021)
- More ...