Machine learning goes global : cross-sectional return predictability in international stock markets
Year of publication: |
2023
|
---|---|
Authors: | Cakici, Nusret ; Fieberg, Christian ; Metko, Daniel ; Zaremba, Adam |
Published in: |
Journal of economic dynamics & control. - Amsterdam [u.a.] : Elsevier, ISSN 0165-1889, ZDB-ID 717409-3. - Vol. 155.2023, p. 1-32
|
Subject: | Machine learning | Return predictability | International stock markets | The cross-section of stock returns | Forecast combination | Asset pricing | Firm size | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Kapitaleinkommen | Capital income | Aktienmarkt | Stock market | Welt | World | Kapitalmarktrendite | Capital market returns | Betriebsgröße | Börsenkurs | Share price | Portfolio-Management | Portfolio selection | CAPM | Prognose | Forecast | Internationaler Finanzmarkt | International financial market |
-
Do anomalies really predict market returns? : new data and new evidence
Cakici, Nusret, (2024)
-
Machine learning predictions of international stock returns
Tobek, Ondrej, (2019)
-
Is there momentum in factor premia? : evidence from international equity markets
Zaremba, Adam, (2018)
- More ...
-
Machine Learning Goes Global : Cross-Sectional Return Predictability in International Stock Markets
Cakici, Nusret, (2022)
-
Do anomalies really predict market returns? : new data and new evidence
Cakici, Nusret, (2024)
-
Factor Momentum Versus Stock Price Momentum : A Revisit
Cakici, Nusret, (2023)
- More ...