Machine learning methods for GEFCom2017 probabilistic load forecasting
Year of publication: |
2019
|
---|---|
Authors: | Smyl, Slawek ; Hua, N. Grace |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 35.2019, 4, p. 1424-1431
|
Subject: | Deep learning | Ensemble forecasting | Global energy forecasting competition | Gradient boosting | Neural networks | Probabilistic forecasting | Quantile random forest | Neuronale Netze | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Energieprognose | Energy forecast | Prognose | Forecast | Wahrscheinlichkeitsrechnung | Probability theory |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Erratum enthalten in: International journal of forecasting, Volume 37, issue 3 (July/September 2021), Seite 1312-1313 |
Other identifiers: | 10.1016/j.ijforecast.2019.02.002 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Ensemble forecast of photovoltaic power with online CRPS learning
Thorey, J., (2018)
-
Zhang, Fan, (2022)
-
DeepAR : probabilistic forecasting with autoregressive recurrent networks
Salinas, David, (2020)
- More ...
-
A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting
Smyl, Slawek, (2020)
-
Optimally configuring a two-stage serial line supply chain under the guaranteed service model
Hua, N. Grace, (2016)
-
Analytical insights into two-stage serial line supply chain safety stock
Hua, N. Grace, (2016)
- More ...