Machine Learning Portfolio Allocation
Year of publication: |
2020
|
---|---|
Authors: | Pinelis, Michael |
Other Persons: | Ruppert, David (contributor) |
Publisher: |
[2020]: [S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Portfolio-Management | Portfolio selection | Theorie | Theory |
Extent: | 1 Online-Ressource (40 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments March 2, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3546294 [DOI] |
Classification: | G11 - Portfolio Choice ; G12 - Asset Pricing ; C13 - Estimation |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Machine Learning and the Implementable Efficient Frontier
Jensen, Theis Ingerslev, (2022)
-
Deep parametric portfolio policies
Simon, Frederik, (2023)
-
The virtue of complexity in machine learning portfolios
Kelly, Bryan T., (2021)
- More ...
-
Machine learning portfolio allocation
Pinelis, Michael, (2022)
-
Nonparametric estimation via local estimating equations, with applications to nutrition calibration
Carroll, Raymond J., (1997)
-
Nonparametric kernel and regression spline estimation in the presence of measurement error
Maca, J. D., (1997)
- More ...