Machine learning portfolio allocation
Year of publication: |
2022
|
---|---|
Authors: | Pinelis, Michael ; Ruppert, David |
Published in: |
The Journal of finance and data science : JFDS. - Amsterdam [u.a.] : Elsevier, ISSN 2405-9188, ZDB-ID 2837532-4. - Vol. 8.2022, p. 35-54
|
Subject: | Equity return predictability | Finance | Machine learning | Market timing | Portfolio allocation | Random forest | Reward-risk timing | Volatility estimation | Künstliche Intelligenz | Artificial intelligence | Portfolio-Management | Portfolio selection | Prognoseverfahren | Forecasting model | Volatilität | Volatility | Kapitaleinkommen | Capital income | Kapitalmarktrendite | Capital market returns | Theorie | Theory |
-
Deep learning, predictability, and optimal portfolio returns
Babiak, Mykola, (2020)
-
A cross-sectional machine learning approach for hedge fund return prediction and selection
Wu, Wenbo, (2021)
-
Sector-level equity returns predictability with machine learning and market contagion measure
Peng, Weijia, (2023)
- More ...
-
Machine Learning Portfolio Allocation
Pinelis, Michael, (2020)
-
Nonparametric estimation via local estimating equations, with applications to nutrition calibration
Carroll, Raymond J., (1997)
-
Nonparametric kernel and regression spline estimation in the presence of measurement error
Maca, J. D., (1997)
- More ...