Machine learning style rotation – evidence from the Johannesburg Stock Exchange
| Year of publication: |
2024
|
|---|---|
| Authors: | Page, Daniel ; McClelland, David ; Auret, Christo |
| Published in: |
Cogent Economics & Finance. - ISSN 2332-2039. - Vol. 12.2024, 1, p. 1-15
|
| Publisher: |
Abingdon : Taylor & Francis |
| Subject: | emerging markets | equity factor | Machine learning | Machine Learning | Quantitative Finance | Statistics for Business, Finance & Economics | style rotation |
| Type of publication: | Article |
|---|---|
| Type of publication (narrower categories): | Article |
| Language: | English |
| Other identifiers: | 10.1080/23322039.2024.2402893 [DOI] 1919500995 [GVK] hdl:10419/321606 [Handle] RePEc:taf:oaefxx:v:12:y:2024:i:1:p:2402893 [RePEc] |
| Source: |
-
Machine learning style rotation : evidence from the Johannesburg Stock Exchange
Page, Daniel, (2024)
-
Al Janabi, Mazin A. M., (2024)
-
Quantifying stock news relevance in Indian markets
Rani, Neelam, (2022)
- More ...
-
Page, Daniel, (2022)
-
Pure quantile portfolios on the Johannesburg Stock Exchange
Page, Daniel, (2023)
-
Machine learning style rotation : evidence from the Johannesburg Stock Exchange
Page, Daniel, (2024)
- More ...